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ABSTRACT
Households are the biggest contributors to UK food waste, surpass-
ing both the production and retail sectors. While food management
techniques can e�ectively reduce this waste, they require too much
time for consistent practice in daily life. This problem presents an
ideal opportunity for automation. However, physical sensing in
research rarely provides true ‘automation’, requiring signi�cant
user behavioural change. Here we pioneer a machine vision method
to automate domestic food inventory without requiring a change
to user storage habits. We harness machine vision to integrate de-
cay state recognition into inventory tracking, a functionality that
is di�cult to achieve with physical hardware. We show that our
object detection model trained on a custom dataset of 2740 images
can recognise 16 classes of food on a Raspberry Pi with 69.4% ac-
curacy. We present a method that combines automated inventory
with food management techniques, to inform waste-reducing in-
terventions through our web app, Pocket Kitchen. We open-source
Pocket Kitchen and its dataset as the �rst step towards user-oriented
domestic food management with machine vision.

1 INTRODUCTION
According to WRAP (Waste Resources Action Programme), a cli-
mate action non-governmental organisation, the UK wastes 9.5
million tonnes of food every year [49]. While waste occurs through-
out the food supply chain, 70% derives from households. Of this,
70% is ‘edible’, equating to 4.5 million tonnes of food - a waste of
243 litres of water per person per day and a land area the size of
Wales [49]. Excluding the ‘inedible’ parts, each individual wastes
an estimated £210 worth of food per year [49]. Subsequently, it is
feasible that an e�cient, a�ordable solution could pay for itself
in savings. Furthermore, the nutritional value of this waste could
provide the necessary nutrients and energy to an adult for 42 days
[22]. With rising food bank dependence [17] and a population ex-
pected to grow to 72 million by mid-2041 [28], whether morally,
environmentally, or economically, there is no shortage of incentives
for ending food waste.

Households dispose of edible food for many reasons: 41% is not
used in time, 28% is due to personal preference and 25% because too
much food is prepared [49]. WRAP found that, despite an increase
in purchasing during the �rst UK lockdown, food waste saw a
dramatic 43% decrease[48]. 79% of citizens adopted an average of
6.7 new food management behaviours, which e�ectively reduced
waste; some of the most signi�cantly increased behaviours were:

(1) Checking what you have in the cupboards before shopping.
(2) Checking what you have in the fridge before shopping.
(3) Cooking creatively (e.g. trying new meals and recipes).

∗Terminology. The "camera" refers to the HQ Camera and attached 6mmWide Angle
Lens. "Food" refers to consumables, including drinks such as milk and juice.

(4) Making a meal by combining random ingredients you hap-
pen to have.

(5) Managing the cupboards (stock and expiry dates).
(6) Managing the fridge (stock and expiry dates).[48]

Citizens also cited freezing items, shopping lists and saving left-
overs as some of the most e�ective behaviours they adopted. How-
ever, 44% of those who stopped their new behaviours by September
2020 cited a lack of time [48]. Modern life and busy schedules are
often incompatible with meal planning and carefully organised
shopping trips, ultimately leading to waste [30]. Although still
lower than pre-Covid, levels of food waste began to increase again
as government restrictions eased [48]. How might we use technology
to reinforce helpful behaviours and encourage them post-pandemic?

Sharing apps o�er systematic means to reduce domestic food
waste, but the method is remedial, not preventative. Similarly, home
composting, anaerobic digestion and rapid composting products
prevent biodegradable waste from reaching land�lls and emitting
Greenhouse Gases (GHGs). However, these services cannot process
all types of food, they do not begin to return the value lost and they
are not yet widely available [39].

Smart fridges have been produced in commercial and research
settings, preventing waste via inventory tracking and stock-level
monitoring. Interventions can provide comprehensive knowledge
of fridge inventory, facilitating companion apps with on-the-go
inventory information [36, 38, 43], recipe suggestions [27, 38], shop-
ping lists [27], expiry alerts [24, 26, 42] and even real-time internal
fridge images [14–16, 46]. However, commercial smart fridges are
too expensive for typical households [14, 15] and still require users
to perform manual labelling.

Research has explored a variety of approaches with physical
sensors, such as Radio-Frequency Identi�cation (RFID), barcode
scanning and photodiodes. However, these methods fall short; they
require signi�cant user intervention or their applicable scope is
limited (Appendix A). Ferrero et al. recognise that overly complex
or disruptive methods provide barriers to adoption integrating
Google® Assistant to reduce the learning curve for their proposed
smart fridge [27]. Nevertheless, a gap persists for a system where
users need not create new habits or provide signi�cant input to
obtain food inventory.

We take inspiration from successful behaviours adopted in lock-
down to aid in tracking food for households. Themain contributions
of this paper are as follows:

(1) A �rst-of-its-kind end-to-end system for inventorying food
in the home with machine vision and decay state recognition.

(2) A �rst-of-its-kind open-source custom dataset of 2740 images
of 13 ingredients and store-bought food items in 16 classes
in the context of the home.



(3) Automated food inventory via object detectionmodel demon-
strating 69.4%mean Average Precision in perceived real-time
in the perspective of a user (an average 6.1fps operational
frame rate).

2 RELATEDWORK
2.1 Datasets and Computer Vision
Convolutional Neural Networks (CNNs) are a highly e�ective deep
learning method primarily used in image processing. CNNs with op-
timised hyper-parameters obtain higher reliability in food detection
than traditional support-vector machinemethods with hand-crafted
features [32].

Our initial testing of models trained on ImageNet found that food
could be mistaken for everyday objects, from a carrot resembling
a surfboard to an egg box resembling cake (see Appendix B). It
follows that datasets tailored explicitly to food items are necessary
for this work.

Kagaya et al. use publicly available food logging data to train their
CNN detection with 93.8% accuracy [32]. However, most images
feature cooked foods, meals, or items served on crockery instead of
packaging. Similarly, the most signi�cant real-world food recogni-
tion database ETH Food-101 comprises mostly of meals (see Figure
1), not individual ingredients, as you would expect to see them in
domestic storage [20]. We address this problem in Section 3.4 with
our custom dataset.

Figure 1: Examples from the Food-101 Dataset [20]

Megzec et al. introduce the NutriNet deep CNN, a modi�cation
of the AlexNet architecture, which presents a higher classi�cation
and detection accuracy for food and drinks images rooted in a 520-
class image dataset from Google image searches [35]. However,
the model sees dramatic losses when classifying real-world images.

Megzec et al. cite over�tting, added noise and occlusion as potential
sources for this inaccuracy and highlight the limitations of image
classi�cation. The single output per image from their model allows
some items to go amiss. We address this problem in Section 3.5
with object detection.

Wong et al. demonstrate successful synthetic dataset generation
for the modelling and recognising store-bought items (95.8% ac-
curacy) [47]. However, data generation required signi�cant time
and specialised labour per individual item, limiting scalability. We
address reducing the time and labour in data collection in Section
3.4 and propose methods for scaling in Section 5.1.8. Klasson et al.
present a dataset for grocery store items with 42 coarse-grained
classes for fruit, vegetables and refrigerated items for the aid of
visually-impaired store customers [33]. Figure 2 shows some ex-
amples. While acceptable for their use case, images featuring bulk
items and store context provide complications to labelling and add
confusion to a model intended for use in the home.

Figure 2: Examples from the Grocery Store Dataset [33]

2.2 Machine Vision
Jain et al. demonstrate the Inception-V3 CNN in a trolley module for
recognising items entering the fridge with item weight integration
[31]. However, it is limited to fruits and vegetables and requires
high user input and non-conventional behaviour to add them to a
list.

Identifying bottles and canned drinks with object detection has
been explored, with Telegram noti�cations for stock management
[44]. We adopt this method for notifying users in Section 3.6.3.
Although Soh et al. achieve high accuracy, the process is too de-
manding for microprocessors, resulting in a more invasive and
costly intervention. We address this in our design objectives, Sec-
tion 3.2. Avinash et al. propose a fridge redesign using a CNN for
recognition and an android app for food management; however,
they present no evidence of implementation [18].

Shweta uses image classi�cation trained on self-collected data to
identify a small variety of vegetables in a fridge vegetable tray [43].
Using image histograms, classi�cation based on colour, texture,
shape, and size �nds the best match with 96.55% accuracy. Rouillard
also utilises image recognition in the Pervasive Fridge but �nds
barcode technology more e�cient [42].

2.3 Decay recognition
CNNs and support vector machines can also identify the degra-
dation of select food items. Billah et al. attain 90% accuracy in
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classifying the age of bananas [19], and Zhu et al. utilise the You
Only Look Once (YOLO) algorithm to identify defected areas on
their peel accurately [50]. There is also potential for further work
as Das et al. o�er a large dataset for grading the freshness quality
of tomatoes [25].

2.4 Mobile Apps
The Kitche app provides inventory management and recipe sugges-
tions from scanned receipts with estimated expiry reminders based
on food type [8]. However, as one user review states, it "won’t work
if someone else occasionally raids your fridge!"[9]. The NoWaste
app provides a solution, allowing users to share inventory and shop-
ping lists [11]. Both NoWaste and CozZo o�er the capability to add
items by scanning barcodes [4]. Nevertheless, users must always
manually add expiry dates as the available databases do not provide
individual product expiry data. Similar apps, such as ‘BEEP’, an
expiry date tracking app, �nd negative user reviews regarding this
user requirement [1].

2.5 Discussion of literature
Food datasets (2.1) in the literature progress towards food item
recognition but focus on bulk items, which do not apply to domestic
inventory management. Machine vision applied to inventory (2.2)
has been too computationally expensive and fails to make full use
of ML capabilities. Neither datasets nor vision present examples
of integrated decay state recognition in inventory management
(2.3). Finally, mobile apps in the literature(2.4) require too much
manual input and user behavioural change and lack the bene�ts of
automation.

With a suitable dataset and model, machine vision provides ac-
curate image recognition for food items with potential expansion
to identifying degradation. Furthermore, it requires little-to-no user
input to take food inventory, promoting easy adoption and the po-
tential to recognise any item. While computer vision sees previous
success in food and drinks recognition, ingredient recognition is
unprecedented in a domestic context. It also provides a signi�cant
opportunity to integrate decay states into inventorying domestic
food automatically.

3 METHODOLOGY
Literature review informs the opportunity for a novel distributed
system. The research objective is to validate the feasibility of an
end-to-end food management system facilitated by machine vision.
We will move beyond approaches in the published literature, inte-
grating decay states and introducing a dataset for ingredients and
store-bought items in the domestic context. Focusing on the fridge
environment provides an appropriate starting point, considering
the appliances store most perishables. Likewise, limiting the scope
of detection to less than 20 classes will create a detailed model with-
out breaching the system requirements of a lightweight computer.
Selecting ten recipes will demonstrate recipe suggestions based on
the capped items contained in the classes.

3.1 Project Approach
We divide the research into �ve sections: Hardware, Dataset, Back-
end: Vision, Back-end: Web-App and Front-end. We adopted a hy-
brid approach during the project. First, a waterfall approach catered
for planning, initial script development and establishing an initial
‘bare-bones’ integration of the project divisions, including hardware.
We then adopted an agile approach to make stepwise improvements
to each section. In addition, we take a minimum-viable-product
approach to prototyping hardware.

3.1.1 Design Approach. We favour a double diamond design ap-
proach. Appendix C provides further details of the design approach
followed and how it furthered the impact of this project.

3.1.2 Use Case. We consider the prospective end-users - the food
purchaser and the home cook - to create an appropriate and a�ord-
able system proposal. This project aims to develop a working proof
of concept for such a system.

3.2 Design Objectives
The ultimate objective of this research is to present a �rst-of-its-
kind end-to-end food management system with integrated decay
state recognition enabled by machine vision. Our objectives for a
technical system design are as follows:

(1) A�ordable
Considering that food waste costs the average family £720
per year [49], we can be con�dent that a solution costing
between 0.5 and 1 times this will be a�ordable, especially if
produced at scale.

(2) Accessible
Design for retro�tting reduces unnecessary electronic and
plastic waste and overall cost. In addition, we assume the
fridge to be an essential kitchen item in the home. Therefore,
no new kitchen appliances are required, and we demonstrate
the system’s capability in other kitchen storage areas.

(3) Small and non-invasive
We wish to minimise user disturbance, whether this disrup-
tion stems from extensive user input or invasive hardware.
However, the literature review showed that interventions
could be large and expensive. Therefore, we require a non-
intrusive system design for easy, subtle integration into the
existing home environment. Consequently, we design for
the use of single-board computers (SBCs).

(4) Minimal user-input automated inventory tracking
Awareness of food inventory correlates with reduced house-
hold food waste. Integrating stock management seamlessly
into users’ lives will promote preventative food waste prac-
tices. Minimal user intervention o�ers the fewest barriers
to entry and, therefore, the highest likelihood of successful
adoption.

(5) Responsive
The detection of food items and their addition to the database
should occur in a time frame close to real-time, as a user
would perceive it.

(6) Educate users on waste streams
We choose not to propose land�lls as a waste stream to the
user. Since education encourages behavioural change, a GUI
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will prompt users to divert excess to responsible streams,
such as food sharing systems, and waste to home composting
or anaerobic digestion.

(7) Open-source dataset for store-bought food items
A minimum of 1000 images will comprise a dataset for store-
bought food items and decay state recognition in the home
context, where some of the most wasted food items will be
targeted [49].

(8) Decay state recognition
We will explore the detection of decay states for three food
items. Alerts to decay states will support waste reduction at
the most common waste stream (41% not used in time).

We detail metrics for benchmarking design objectives in Appen-
dix D.

3.3 Prototyping Approach: Hardware
The hardware (see image) consists of a 4GB Raspberry Pi 4, Rasp-
berry Pi High-Quality camera and a 6mm Wide Angle Lens. The
internal fridge environment can interfere with electronic compo-
nents and is dark unless the door is open. Consequently, we mount
the camera on the outside of the appliance, obtaining a birdseye
view.

3.3.1 Raspberry Pi. Raspberry Pi provides a small, a�ordable com-
puter ideal for devices in the Internet of Things, Sensing and Control
domains, and attaching to a fridge. Furthermore, its many ports
provide opportunities for expansion and modular design.

3.3.2 Coral AI Accelerator TPU. Object detection is computation-
ally expensive and negatively impacts frame rate. With Raspberry
Pi, the Google Coral AI Accelerator dramatically improves the in-
ference speed of object detection, enabling more accurate tracking
of moving items within the camera frame.

3.3.3 Rapid Prototyping. Additive manufacturing provides an af-
fordable means of rapidly re�ning and obtaining desired parts for an
experimental set-up. The mount design was improved in iterations
to be more versatile than the initial screw-based iteration.

Figure 3 shows three prototypes for mounting the Pi to the fridge.
The �rst was made from mount-board and screwed into place. The
second was 3D-printed for strength. While it has holes for screws,
clamps are necessary to secure it to a di�erent fridge style. Noting
this we re�ned the �nal design for clamps, since they o�er more
adaptability than screws. The �nal design features two long clamps
and a mounting frame designed to work with them.

Figure 3: Prototypes 1-3

We use 3D prints to mount the HQ camera and lens to the pi (see
Figure 4), creating a concise protected part and a familiar camera

shape recognisable to a user. The frame is made custom �t to the
camera in Autodesk Fusion 360 to secure it in place whilst retaining
adaptability. This method can retro�t many fridges and cupboards.
The clearance of the fridge door is dependent on the mount’s height.
While this may vary across di�erent appliances, clamps allow the
addition of spacers. Figure ?? shows an overview of the �nal system
prototype.

Figure 4: 3D Printed Camera Case Assembly [10]

Figure 5: Hardware Prototyping Overview

3.4 Prototyping Approach: Dataset
3.4.1 Dataset. Machine vision facilitates generalised sensing. Internet-
collected datasets often see poor accuracy in real-world testing,
signifying the importance of accurate data [35]. Some of the most
extensive datasets also lack images from a domestic context [20].
Despite demonstrating realistic outputs, creating synthetic datasets
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Class Number of Images

Banana 331
Bread 151
Carrot 76
Cream 191
Juice 309
Milk 239

Mushrooms 364
Pepper 278
Potatoes 146
Salad 310

Soft-Fruit 273
Yogurt 142

Table 1: Class Sizes for the Dataset

can require specialised technical knowledge and signi�cant labour
per item for accurate food recognition [47].

We establish an image dataset for ingredients and store-bought
items in the home environment. We use the HQ camera to capture
images both in and out of context. Discussion with experienced
researchers determined a minimum of 1000 images to achieve ac-
ceptable results. We use a Python script, ‘photo.py’, to add �le
names in bulk and a button to capture images, speeding up data
collection and aiding labelling later on.While Google Cloud Storage
proved helpful for data storage, transferring �les across the local
network su�ced and was advantageous for its lack of cost.

We give individual labels to decay states, simplifying their inclu-
sion in the dataset. We experiment with three food items: peppers,
mushrooms and bananas. Figure 6 provides an example.

Figure 6: Dataset example labelled ‘pepper-bad’ (left) and
‘pepper’ (right)

3.4.2 Dataset v2.0. improve the dataset by removing some am-
biguos images and evening out class sizes, Table 1 describes the
composition of �nal 2740 image datatset.

We open-source the dataset on Github for community contri-
bution and furthering the �eld of food recognition in domestic
environments:
https://github.com/myPocketKitchen/PocketKitchen-Dataset

3.5 Prototyping Approach: Vision
3.5.1 Labelling. ‘LabelImg’ is an open-source Python program for
image labelling with bounding boxes (bboxes). Image classi�cation
models can miss food items if there are multiple in one image [35].
Object detection, however, requires bboxes to identify multiple
items in one frame and their locations, enabling the tracking of
items through the frame. With the bene�t of our overhead view,
we can store bbox coordinates to determine whether items enter or
leave their storage environment. Labels are in PascalVOC format
for TensorFlow. All images were labelled manually.

3.5.2 Object Detection. We select the E�cientDet model architec-
ture for object detection. Figure 7 shows that E�cientDet o�er high
mean average precision (mAP) for reduced computation against
other standard architectures [45].

Figure 7: Tan et al. �nd E�cientDet models are 4x-9x smaller
and use 13x-42x less computation than previous detectors
for the same accuracy during testing [45].

TensorFlow E�cientDet models are convertible to TFLite models,
compatible with Raspberry Pi, where standard object detection
models are often too large. Furthermore, unlike other models, such
as tiny-YOLO, TensorFlow o�ers easy adaption for TPU acceleration
with the Coral AI Accelerator (Edge TPU), reducing inference time
and improving our ability to track items through the camera frame
in a small, non-intrusive prototype.

E�cientDet has several architectures programmable with Ten-
sorFlow and Edge TPU. We select our model by balancing system
speci�cations, latency and accuracy. The Coral AI Accelerator has
approximately 8MB of SRAM. Breaching this requirement will in-
crease inference times as model parameters will be fetched from
host system memory. We prioritise reducing inference times to
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Model architecture Minimum TPUs Recommended TPUs

E�cientDet-Lite0 1 1
E�cientDet-Lite1 1 1
E�cientDet-Lite2 1 2
E�cientDet-Lite3 2 2
E�cientDet-Lite4 2 3

Table 2: Recommendations for the number of Edge TPUs to
use with each E�cientDet-Lite model

Model architecture Size(MB)* Av. Recall** Av. Precision ***

E�cientDet-Lite0 5.7 54.6% 64.5%
E�cientDet-Lite1 7.8 62.2% 64.7%
E�cientDet-Lite1
(Dataset v2.0)

6.0 66.1% 69.4%

Table 3: The Performance of each trained E�cientDet-Lite
Model Compared to each other
* Size of the integer quantized models complied for TPU with
metadata.
** Average Recall is the mAR (mean Average Recall) given
one detection per image.
*** Average Precision is the mAP (mean Average Precision).

work towards perceived real-time performance. Since we expect
future work expanding the dataset can improve accuracy, we trade
o� accuracy to reduce latency as well as restricting our model to
less than 8MB. We have access to one Coral AI Accelerator; Table 2
shows that E�cientDet-0 and 1 o�er the most reliable service with
our system speci�cations.

Table 3 shows iterative improvement on our model during the
agile phase of the project. We evaluate our models with the COCO
(Common Objects in Context) evaluation metrics [3]. These metrics
are sector standard tools for evaluating and comparing the accuracy
of di�erent object detection algorithms.

We re�ne to the E�cientDet-Lite1 model trained on Dataset v2.0.
Figure 8 shows an example detection by our model during testing.

.

3.5.3 Detect.py and MongoDB Atlas. Figure 9 shows the �owchart
for processes on the Raspberry Pi. We add the bottom bounding
box coordinate to a dictionary with the recognised item as the key.
Once list length passes a threshold, we determine if the item moves
down or up the frame (in or out of the fridge, respectively). Then,
we add or remove the item from the database and clear the values
in the dictionary.

MongoDB Atlas is our database of choice; it is a free, fast and
well-documented NoSQL database storing JSON format documents.

3.6 Prototyping Approach: Back-end - Web App
3.6.1 Calculating Expiry Dates and recipe suggestion. Figure 10
shows the �owchart for back-end processes for the web app, per-
formed both client and server side. Upon adding a new item, we
prompt the user for an expiry date, which we upload to our data-
base.

Figure 8: An example detection by our model during testing

Figure 9: A �ow chart for processes on the Raspberry Pi

From the expiry date, we calculate a countdown in the client-side
javascript. These enable di�erent nudges based on proximity to
expiry as well as recipe suggestions based on using foods most at
risk of going to waste.

Modals inform users of responsible waste streams, should an
item become inedible, and encourage users to maximise their food
use.
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Figure 10: A �ow chart for back-end processes on the Web
App

3.6.2 Recipe Suggestion with Wordnet. Recipe suggestion from a
string is already successful [12], and we incorporate an established
method into the web app. The method uses machine learning (ML)
and word vectorisation to improve suggestions and is scalable.
The original author’s application is built upon two-thousand web-
scrapped recipes and provides the means to expand our ten recipe
demonstration with ease [7, 34].

3.6.3 Telegram Notifications. Users can subscribe to Telegram no-
ti�cations from Pocket Kitchen from the Web app. Users receive
alerts notifying them of foods close to expiry to encourage their
use.

We host the web app on Heroku with Express for access any-
where with an internet connection.

3.7 Prototyping Approach: Front-end
3.7.1 Web App Interface. The web interface is coded with Boot-
strap 3 - a mobile-�rst web interface package - and presents three
main features: Food Inventory, Recipe Suggestion and Expiry Noti-
�cation. Fig 11 shows the GUI created for Desktop and Mobile use.
Mobile accessibility is vital to reducing household waste, allowing
users to always check their inventory before shopping.

3.7.2 Food Inventory. Requests to a Mongo database retrieve a list
of items identi�ed to be within the fridge. We also record the date
and time of entry to the fridge. New items prompt the user to sug-
gest or enter an expiry date, which we return to the database. Upon

Figure 11: Pocket Kitchen Graphical User Interface - Mobile.
Avaliable at www.mypocket.kitchen

the approach of an item’s expiry, we notify users via a Telegram
message. Design psychology informs nudges with a tra�c light
system to increase general awareness of item expiry.

3.7.3 Recipe Suggestion. We demonstrate ranking according to
two distinct criteria: what a user has and what is most at risk of
going to waste. This encourages the food management technique,
"making a meal by combining ingredients you happen to have." [48]

3.7.4 Education. Positive waste streams are widely encouraged.
When items pass or approach expiry, we encourage users to judge
for themselves if an item is edible, as recommended by WRAP and
Government advice [2, 5]. Should an item be wasted, we propose
responsible disposal practices and never land�lls.

3.7.5 Ethics and Privacy. Mongo mediates between the Pi and the
global network (Heroku). It permits the separation of sensitive data
on the Pi from the global network.

4 OUTCOMES
Previous literature regarding food inventory management consis-
tently demands high levels of user input. More autonomous systems
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Class Mean Average Precision

Banana-Ripe 49.4%
Banana-Overripe 79.5%
Banana-Unripe 22.1%

Bread 74.2%
Carrot 66.0%
Cream 78.0%
Juice 79.9%
Milk 83.2%

Mushrooms-Good 70.7 %
Mushrooms-Bad 88.8%
Pepper-Good 74.6%
Pepper-Bad 53.0%
Potatoes 66.7%
Salad 74.8%

Soft-Fruit 80.4%
Yogurt 69.6%

Table 4: Mean Average Precision for Classes in the
E�cientDet-Lite1 Model

provide fewer barriers to entry but are rarely thoroughly investi-
gated. Machine vision facilitates such a system; food inventorying
that asks less of the user and provides more from their food.

4.1 System
Pocket Kitchen provides a charming and informative title to a
human-oriented system. The distributed system is outlined in Fig-
ure 12. The system is comprised of hardware, software and a cloud-
based database connected over the global network. We facilitate
access on the go with a Heroku-based web app:
www.mypocket.kitchen

4.2 Dataset Creation and Model
Object detection provides multiple outputs per frame, recognising
items that image classi�cation may miss. Bounding boxes also allow
us to track items through the frame, determining whether items are
being added or removed. Models were trained in Google Colab and
on a local computer with TensorFlow. We perform object detection
on the edge (on the Raspberry Pi) and improve frame rate by 84.8%
by enabling an Edge TPU. Making trade-o�s between speed and
accuracy to create a functional and e�cient system was crucial.
Table 4 shows our promising results for each class. We use the
sector standard COCO tools to evaluate our model performance
[3]. Averaged across all classes, we achieve a mAP of 69.4% .

4.3 Testing
Physical testing with the camera viewport aided the selection of a
model with the designed system. Our agile approach allowed steady
improvement of the model and re�nement of the dataset.

The prototype incurred 3 days of testing. Figure 13 shows the
testing setup.

4.4 Benchmark Evaluation Table
Ahead of prototyping, we set several design objectives. Upon com-
pletion of the end-to-end system prototype, we return to our goals
to measure achievements against measurable benchmarks in the
context of our design intentions, provided in Appendix E. We pro-
vide a discussion of benchmark success in Section 5.1

4.5 Open Source
This project would not have been possible without open sourcing.
Community aids technological development, and this project is
no exception. We open-source this project to encourage further
research into technical interventions for domestic food waste to
promote machine vision to reduce barriers to entry and to make
our dataset of domestic food items globally available.

5 DISCUSSION
5.1 A Re�ection on Design Objectives
5.1.1 A�ordable and retrofi�ed. E�orts toward domestic food man-
agement in the literature regularly require hardware beyond the
budget of the typical intended user [44]. Excluding ‘inedible’ parts,
families waste an estimated £720 worth of food per year [49]. Like-
wise, individuals waste an average of £210 per year. Since the project
costs came to £187.99, it is feasible that this intervention could pay
for itself in savings.

While prototyping enjoys feeless server and storage usage, this
is not possible on a widespread intervention. In addition, increased
database security is necessary at scale; food inventory contains valu-
able and sensitive personal data. In contrast, components bought in
bulk are cheaper. Raspberry Pi provides surplus capabilities for this
use case. Future work could explore custom components tailored
to the project needs and optimised for inference speed reduction.

Retro�tting all cupboards and fridges poses a substantial chal-
lenge. Modules for appliance adaption in the literature are fre-
quently too large for subtle integration into the home [18, 44]. We
make a reasonable attempt with 3D-printed clamps and a mount-
ing frame. In addition, we �nd that matching the appliance colour
allows for a discreet modi�cation. Still, this does not cater for all
appliances and home installations. Future work could facilitate a
universally applicable mount design.

5.1.2 Small. As previously mentioned, interventions observed in
the literature repeatedly o�er invasive hardware for the home en-
vironment. For example, one even o�ers a whole trolley module
to accompany your appliance. Instead, we present a minimalist
fridge or cupboard attachment that could �t comfortably inside a
shoebox. Detection runs on the Coral AI Accelerator, supported by
a lightweight computer - the Raspberry Pi 4.

5.1.3 Accessibility. We use hobby components and non-specialised
parts to construct the hardware set-up. While some parts are 3D
printed, equivalent low-cost commercial parts are available. Fur-
thermore, the custommount could be handmade from any arbitrary
materials as in the initial prototype.

System bene�ts are redeemable from anywhere with internet
access. We make the web app available on the global web to permit
the bene�ts of inventory management beyond the con�nes of the
home and embed it into our newly returned ‘normal’ lives. However,
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Figure 12: Pocket Kitchen System Architecture

without an internet connection, the system cannot be accessed.
Future developments could see the integration of o�ine capabilities
into a mobile application.

5.1.4 Minimal user input automated inventory tracking. Methods
for inventory tracking seen in the literature consistently require
signi�cant user input, particularly since WRAP �nds users struggle
to maintain e�ective behaviours due to a lack of time [48]. We
successfully implement object detection to identify and track food
items with minimal user input. Our TFLite Object Detection model
achieves an average accuracy of 69%, with more than half of the
classes achieving over 70% accuracy (see Table 4). Given that we
use 16 classes, this provides better than chance performance, and
further work could continue to improve accuracy.

However, machine vision does have some limitations. Firstly,
each new item added to the dataset requires the generation of
a new model. However, transferring ML processes to the Cloud
with AutoML could minimise interference. Secondly, items smaller
than the human hand, therefore concealed by it, will be missed
altogether. Using a second camera may help but not completely
solve the problem. Therefore, users must make a speci�c e�ort
to ‘show’ each item to the camera. Since this minor adjustment
facilitates the system, we deem it feasible and believe users can

adjust naturally over time. A fridge-mounted GUI could aid the
process in future.

Since the camera cannot automatically focus, the �eld of view is
not all in sharp focus. However, an improved, broader dataset or
data augmentation could help accommodate this characteristic.

We use prompts to obtain expiry dates. Even if users estimate a
date, it adds value, allowing the system to encourage users to eat
their stock before expiry. However, further work could implement
a second model to recognise expiry dates for select items.

We successfully demonstrate automatic inventorying of food
items; however, we cannot determine how much of an item we
possess. We could obtain this data by �tting load cells to the fridge
or cupboard shelves to determine the change in mass for each item.
A further dataset could aid this process with packaging weights
for standard items. In addition, this could aid another limitation;
all items entering the storage environment are identi�ed as new,
even those being returned there. Finally, accurate weight sensing
could facilitate the identi�cation of returned items. We o�er a
rudimentary demonstration of combiningweight and vision sensing
during previous work [6, 13].

9



Figure 13: Prototype Testing Set Up

5.1.5 Responsive. Our model makes detections in near real-time
in the perception of a user with an average frame rate of 6.1s. De-
tections are made and added to the database in a matter of seconds
(on average, 110.3ms). As a result, the detection rate performs su�-
ciently well for maximum usability and user convenience.

5.1.6 Educate users on waste streams. Multiple methods in the
literature, apps, in particular, apply several user interventions in
one design, maximising e�ectiveness and impact. We adopt this
technique in our distributed system.

Design psychology informs the use of nudging. For example,
during front-end web development, we employed the strategy to
urge the user towards positive food management practices and
waste streams where necessary; a tra�c light system communicates
risk to the user and conveys urgency. As well as this, Telegram
supplies friendly prompts to promote the use of ‘at-risk’ items.

5.1.7 Decay States. In our model, both unripe and ripe bananas
face low recognition rates (see Table 4). Therefore, we can infer
that the similarity of the classes creates confusion in the model.
However, it is worth noting that this may align with human recog-
nition of bananas since it is often hard to distinguish ripeness by
sight. Moreover, determining ripeness often relies on personal pref-
erence. Therefore, improving the distinction between the classes
and re�ning their de�nition will reduce ambiguity.

Literature explores speci�c models for decay state recognition
tailored to each item of food [19, 50]. In future, we may also wish to
consider using a separate model tailored to determine each item’s
state of decay.

5.1.8 Open-source dataset for store-bought food items. Our dataset
contains 16 coarse-grained classes with seven �ne-grained classes
across 2740 images. Compared to the literature, this is approxi-
mately half the size of the Grocery Store Dataset, but we provide
signi�cantly more images per class. There is substantial room for

improvement here, given more time, but our model provides an
acceptable demonstration of the bene�ts of machine vision.

While mounting to the top of the appliance allows for application
across the kitchen environment and avoids the problems raised by
the internal fridge environment, an overhead view can provide
challenges for detection. Moreover, a limited and atypical view
limits the bene�t of external image data. A larger dataset produced
for our needs will help address these issues.

Several project limitations are solvable with more images. APIs
for step-wise image data collection are in research and development
[21]. Adapting these APIs could support data collection in the future.
Open-sourcing the project and inviting community contributions
using such APIs could rapidly scale dataset growth and improve
future models’ accuracy and reliability.

5.2 A Re�ection on Methods
We �nd that our design approach produced an appropriate and tech-
nically benchmarked solution to a well-de�ned research problem.
In addition, our hybrid approach to minimum-viable-product pro-
totyping facilitated the delivery of a complete working prototype
comfortably within the project timeframe, allowing for elaborate
features and exploration. Abiding by the critical path proved es-
sential to the project outcomes and achievements, and we strive to
continue this approach in future.

Henceforth, we aim to approach machine learning with more
rigorous evaluation tools. For example, coding the entire Tensor-
Flow model or using Google’s AutoML service would unlock the
full bene�ts of Tensorboard’s model analysis tools.

5.3 Next steps
There are several technical developments necessary to widen the
impact of our system. A larger dataset, improved modelling, and
hardware are the �rst steps towards reliable integration into a
home environment. Where expiry dates are not speci�ed, we could
achieve further autonomy by estimating them automatically. Physi-
cal sensors could o�er their bene�ts in conjunction with our system.
For example, integrating load cell sensors could identify when users
open packaged items and howmuch of an item is left, or gas sensors
could identify the prevalence of particles released during biological
decay. In addition, we could apply the bene�ts of machine learning
to other aspects of the system. For example, a model could learn
user shopping and waste habits over time to reduce prevent waste
from overbuying, applying the full advantages of machine learning
to ideas seen in the literature.

We consider howwemight scale image dataset creation. APIs are
in development, tailored to rapid image data collection. Applying
these methods with but a handful of users will quickly gather a
wealth of data. While manual voluntary labelling is always possible,
Amazon Mechanical Turk is a standard commercial and research
tool for faster, more scalable labelling at an a�ordable price.

5.4 Impact
We show that machine vision makes minimising the entry barriers
for food inventory management methods feasible. Furthermore,
our system is the �rst of its kind, providing users with more com-
prehensive data via integrated decay recognition. The individual
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wastes an estimated 69kg of edible food yearly; our system could
aid the reduction of this waste to zero. This reduction represents a
saving of £210 per individual per year and the reduction of methane
in land�lls, a Greenhouse Gas with 72 times the warming poten-
tial compared to carbon dioxide over 20 years [29]. Moreover, this
minimises the waste of the embodied energy within the edible food
we throw away. Unlike commercial smart fridges, this interven-
tion is a�ordable, and non-intrusively builds upon appliances users
already possess.

6 CONCLUSION
There is no shortage of reasons to end food waste. While the UK
has the largest percentage of under 15-year-olds living in severe
food insecurity in Europe[40], each UK household wastes approxi-
mately £720 worth of food yearly[49]. Households are responsible
for 70% of the total 9.5 million tonnes of annual UK food waste,
and 70% of the food they dispose of is ‘edible’ [49]. In addition,
food waste makes up an immense 9% of global anthropogenic GHG
emissions [23]. Food management behaviours that previously re-
duced domestic waste during lockdown now take too much time
to be maintained in regular life [48]. Although technological inter-
ventions for domestic food management exist, they consistently
require signi�cant user input (see Appendix A Table 5) , causing a
high barrier to entry and lowering the likelihood of adoption.

We propose the use of machine vision to create interventions
built upon users’ lives instead of insisting they change how they
store their food. This paper presents a �rst-of-its-kind system for
taking food inventory from discovery to delivery. The literature
review highlighted the value of CNNs for machine vision in food
tracking and the opportunity it presents for decay state recogni-
tion. We take inspiration from the successful behaviours adopted in
lockdown to reinforce methods for minimising waste and present
our interventions in a user-friendly globally-available web applica-
tion. In contrast to the state-of-the-art, we prioritise minimal user
input in taking inventory. Using an initial waterfall approach to
minimum-viable-product prototyping, we conquered challenges
on the critical path before taking an agile approach to iterative im-
provement and development. As a result, we o�er users a breadth
of resources, from Telegram noti�cations to advanced recipe sug-
gestions. Our system is the �rst prototype designed for prospective
end-users - the food purchaser and the home cook.

We recognise 13 food items with a mean average precision of
69.4% and an average frame rate of 6.1fps. We can recognise three
of these items in various states of decay. A dataset of 2740 labelled
images provides the foundations for our E�cientDet-Lite1 model,
and we open-source it to encourage community contributions. To
advance machine vision for domestic food inventory management,
we open-source this project on GitHub. The Pocket Kitchenweb app
presents the food inventory, gathered with minimal user interven-
tion, to the user. Promoting e�ective food management techniques,
we urge users to check expiry dates, manage their fridge or cup-
board, and cook creatively based on their ingredients. We present
these encouragements on the web app in the form of nudges, recipe
suggestions and Telegram alerts.

In the future, further additions to the dataset could create more
precise food recognition models. In addition, exploring new hard-
ware designs could o�er tailored product speci�cations to machine
learning and a more adaptable kitchen environment integration.
More extensive integration of machine learning could �ne-tune
interventions to user behaviour. For example, it is feasible that the
system could learn about the individual user’s waste habits and
intervene ahead of their occurrence. The system could also o�er
nutritional information for health monitoring and dieting. Adjust-
ing this system design could deliver machine vision to solve other
supply and demand problems or handle food management in new
settings, such as o�ces or even supermarkets.
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APPENDIX
B PHYSICAL SENSING APPROACHES TO FOOD INVENTORY MANAGEMENT

Table 5: Review of Physical Sensing

Sensing Type Advantages Disadvantages

Radio-Frequency identi�cation Simplify tracking many items, Pre-
tagged bags reduce user workload but
still require new habits [37]

Requires user to manually tag items, Pri-
vacy risks [38]

Barcode scanning Gather extra data when tagging Signi�cant user involvement, expiry
dates not integrated.

Photodiodes [26], light-dependent resis-
tors [41] infrared sensors [24] pressure
sensors [41]

Identify stock levels for solids and liq-
uids without the privacy risks of RFID.

Sunlight interferes with photodiodes
whilst the fridge is open, and transpar-
ent liquids cannot be detected [26]. Fur-
thermore, the internal fridge environ-
ment can disrupt regular component op-
eration [46].

C OBJECT DETECTIONWITH IMAGENET IN PRACTICE

Figure 14: E�cientNet-Lite0 trained on ImageNet predicts a carrot to be a surfboard and an eggbox to be a cake

D DESIGN APPROACH
Figure 15 shows the Double Diamond approach taken to design.

E TANGIBLE BENCHMARKS FOR DESIGN OBJECTIVES
Table 6 shows design criteria and measurable benchmarks.

F RESOURCE MANAGEMENT
F.1 Data Management
We store data securely on Mongo DB Atlas.

F.2 Version Control
GitHub ensures version control. Since editing on Raspberry Pi and on a cloned GitHub repository can result in con�icting versions, the Pi
will only be operated headless via ssh and VNC Viewer. All editing will be made with Visual Studio Code in a repository on a separate
computer and pushed to the Pi. Although a somewhat tedious method, it o�ers reliable version control, as well as fast editing on a preferred
GUI.
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Table 6: Design Benchmarks

Design Goal Benchmarks Derivation Result
A�ordable No more than £720 The annual cost of waste for a

household
£187.99. We provide a break-
down of costs here.

Accessible Designed for retro�tting to
fridges and cupboards

Requires no new appliances Clamp-oriented 3D-printed 3-
component design but requires
a ‘lip’ for attachment. Further
work needs to achieve a truly
universal design.

Minimal user-input automated
inventory tracking

mean Average Precision (mAP)
>200%/(number of classes)

At least twice as good as guess-
ing

mAP = 69.4%
Lowest classwise mAP = 22.1%
Highest classwise mAP = 88.9%

Minimal user-input automated
inventory tracking

0 unplanned human interven-
tions

Minimum user input required,
maximum system autonomy de-
sired.

3 unplanned interventions in 24-
hours. Higher accuracy will be
achieved via dataset improve-
ment

Responsive Time from recognition to data-
base addition <3s

Perceived real-time addition to
the database for users

Average time from recognition
to database update: 110.3ms

Small and non-invasive Fridge/ Cupboard top form fac-
tor

<250mm^2 160mmx130mmx120mm

Small and non-invasive Use a single-board computer
whilst maintaining functional-
ity

Reduces prototype size Prototyping hardware com-
prised of Raspberry Pi 4 4GB
and Coral AI accelerator.
Educate users on waste streams

Diversions to responsible waste
stream at the point of potential
expiry/waste

Preventing the use of land�lls
where it can be prevented

Nudges at the approach of ex-
piry promote the use of sharing
apps if the user does not intend
to use the item. Nudges at the
point of expiry divert users to
local food waste and home com-
posting.

Open-source dataset for store-
bought food items

1000+ Image Dataset on GitHub Research professionals inform
the minimum quantity of im-
ages. Industry-standard �nds
datasets stored on GitHub

2740 labelled images

Decay state recognition Three food items Three accessible food items
with distinct decay states

Bananas: Ripe, Unripe, Over-
ripe. Peppers: Good, Bad. Mush-
rooms: Good, Bad.

Decay state recognition mean Average Precision
>100%/(number of classes)
mean Average Precision
>200%/(number of classes)

Better than chance 16 classes o�ers a 6.25% chance
of accuracy when guessing. Our
decay states achieve the fol-
lowing mean average precision.
Banana-Ripe: 49.5%, Banana-
Unripe: 22%, Banana-Overripe:
79.5%, Pepper: 74.6%, Pepper-
Bad: 53.0%, Mushrooms, 70.7%
and Mushrooms-Bad: 88.9%. We
discuss these results in Section
5.1.7.

Decay state recognition Decay states in�uence recipe
suggestion

Wewish to integrate decay state
recognition into system func-
tionality. We wish to encour-
age the use of items visually ap-
proaching expiry, as well as ap-
proaching predicted expiry.

Parsed ingredient state in�u-
ences recipe suggestion by ex-
piry. Negative ingredient state
increases rank of respective
recipe suggestions
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https://docs.google.com/spreadsheets/d/1gHZkfleKDTZsEAYC8PPvdvDPvtrZR69z8KfvyXB1iqo/edit?usp=sharing


Figure 15: Project Design Approach
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